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Introduction

Designers, craftsmen and modellers need to be able to determine with accuracy the
volume of a vessel. If it exists as a prototype, this can be done easily by filling it with
water from a graduated cylinder or by weighing the water that is needed to fill it. If
the design, however, exists only as a drawing or solid model, other methods have to
be used. Design usually starts on paper, but not always, and it is impossible when
designing let us say a wine glass, carafe or teapot to be sure that what you have put
on paper will have the required capacity. It is important to be able to determine
accurately the volume of what you have drawn and then if necessary adjust the
drawing to give a required capacity.

Most people with a modest knowledge of maths know how to calculate the volume
of a cube, cylinder or sphere, but the objects we are concerned with do not usually
fall into these categories. There are no simple mathematical formulae to calculate the
volume of these solids. In order to calculate the volume, it is necessary to divide them
up into component parts such as cones or cylinders or break them down into slices
in the way that salami is cut in a delicatessen. It is possible to calculate the volume of
any 3-dimensional object with reasonable accuracy by establishing the sectional area
of parallel slices at regular intervals. The more slices the greater the accuracy. This is,
of course, easy to do if the object has a circular cross-section as the cross-sectional
area of any slice can be derived from its radius. Unfortunately, many practitioners of
design and modellers working in the ceramic industry have been taught to do this
incorrectly. The system that is often used is to measure the sectional radii, average
these and calculate the volume as a cylinder. In certain cases this method can give an
error of such magnitude that it renders the calculation invalid. Using the same
measurements, it is possible to perform an accurate volumetric calculations by
employing a slightly different technique called Durand’s Method.

In the following chapters, various techniques of volume calculation are given: these
include the universally applicable Durand’s Method, and some quicker methods
based on geometric shapes such as cones and cylinders, and an intriguing method
known as Pappus’ Theorem.

The subject of volumetric calculations has not been covered previously for people
with minimal mathematical knowledge. The ways that are recommended for these
calculations are in many cases approximations, but with care, should give results
accurate to a few percent. There are some tricks of the trade that are useful, like how
to model a figurative piece, such as a Toby Jug, at a predetermined capacity. Few
mathematicians would have any idea how this could be done.
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1. Volume Calculations of Solid
Objects

It is normally recommended that brimful capacity should be measured. In
the case of vessels with an internal fitting lid, the capacity should be
measured to the underneath of the verge that supports the lid. Some coffee
and tea pots overflow before the liquid rises to this point and if this is the
case the capacity should be measured to this height.

With containers for liquids such as beer, wine and spirits, capacity has to
take into account headspace: this is the capacity in the container above the
point to which it will be filled. The head space is expressed as a percentage
of the volume of the liquid that will be put in the container. This is termed
the vacuity.

With a normal wine bottle holding 750cc and with a cork closure, the
vacuity will be between 3.5 and 4.5%, giving a bottle with a brimful
capacity of 776cc to 783cc.

MEASURING CYLINDERS

Fill the measuring cylinder accurately to a capacity greater than the volume
of the vessel that you want to measure (volume A). Pour water from the
cylinder into the vessel and then note the volume of the water left in the
flask (volume B). The volume of the vessel is A-B. Always use the smallest
diameter cylinder possible.

Taking the reading of a measuring cylinder is confused by the water
climbing up the sides around the contact points with the glass, an action
caused by surface tension. For accuracy the reading must be taken to the
general level of the water away from the sides.

DISPLACEMENT

Any solid object that is immersed in a liquid displaces its own volume. This
simple principle is evidenced when you get in the bath and the water rises.
Archimedes was the first person to see the scientific importance of this. It is
possible to determine the volume of a solid object by lowering it into a
tank full up with water and measuring the volume of the water that
overflows. Obviously, this would be a messy system so it is necessary to
have a tank with an overflow pipe. The tank is then filled to the level of the
overflow pipe. The object in question is lowered into the tank, causing
water to be displaced through the overflow pipe. The volume of the
displaced water is the same as that of the immersed object.

It needs to be noted that objects denser than water will sink by their own
weight but objects that float need to be pushed under using a stiff, thin rod
or immersed by attaching weights whose displacement can be determined
separately. The other problem that may be encountered is porosity. If the
object absorbs water the result will be inaccurate. This can be a problem
with plaster, which is the most commonly used material for ceramic model
making. The answer is to make sure the plaster model has been soaked
thoroughly, or coated with a material that renders it impervious.
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Weight

It is now possible to buy for a modest price accurate electronic kitchen
scales with a digital display. The density of water is 1.00 (Ig = Icc) so any
weight of water in grammes can be transposed into a volumetric
measurement in ccs. It is far easier to check volume by weight using
electronic scales than by using a measuring cylinder. First weigh the vessel
whose volume you wish to establish, then fill it with water and weigh
again. The volume is the difference between the two weights, grammes
equalling ccs. If you weigh in ounces then you have immediately got the
capacity in fluid ounces. Most kitchen scales have a zero key so that you
can cancel the weight of the vessel before filling it with water so it is only
necessary to weigh once.

Densities

The density of an object is defined as the weight of the object divided by its
volume. The density of water is 1.00g/cc whereas the density of fired
ceramic material is approximately 2.5g/cc (ie. every cubic centimetre weighs
2.5g).

The volume of materials that make up an object can be calculated if the
density and weight of the material is known. For example, an empty teacup
has a weight of 225g. The volume of the ceramic material used can be
calculated by dividing the weight of the teacup by the density of the
constituent ceramic (2.5g/cc). Thus the volume of the ceramic material used
in the construction is 225+ 2.5 or 90cc. This information is particularly
useful when determining volumes by complete displacement. The internal
volume of an object equals the displacement volume less the material
volume. A table of densities of common materials is given in Section 7.

Snips and Spouts

Jugs, coffeepots and teapots have some capacity in their pouring
appendages, normally volumetric calculations disregard this. When
making volumetric calculations of these vessels the following capacity
increases are suggested:

Pots with short spouts 65 mm add 20 cc

Pots with long spouts 90 mm  add 30 cc

Cream jugs add 5cc

Gravy boats add 8cc

Special Case (Toby Jug Method)

It is possible to model an irregular ceramic form like a Toby Jug to a given
capacity without making a calculation. There is a reasonably accurate
relationship between the volume of a clay sized model, and the fired size
vessel produced from the model, provided the forms are of a general
similarity. If it is known that a one pint Toby Jug is modelled from a
particular volume of clay, then other Toby Jugs modelled from the same
volume of clay will also have a one pint capacity. This system works if you
assume the same ceramic body, firing temperature and wall thickness.

-
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2. Volume Calculations of
Designed Objects

For vessels at the design stage, prior to three-dimensional modelling, the
methods demonstrated in the following sections can be used to calculate
volumes. Whilst in most practical cases, it is usual to make certain
approximations (decreasing the overall calculation time), it has been found
that the methods described yield both reasonably accurate and useful
results.

There are four basic methods of calculation:

1) Use of mathematical equations that describe or approximate closely the
form of a vessel-drawing a & b on facing page.

2) Dividing the solid in question into a series of convenient conical or
pyramidal sections that closely.approximate the overall shape, calculating
the volume of each section by simple formulae, and adding the volumes of
each section together - Drawing c.

3) Dividing the solid into small slices of equal height and applying
Durand’s rule to the dimensions of each section to obtain the volume, the
more slices the more accurate the result, (called Durand’s method) -
drawing d.

4) Pappus’ Theorum - drawing e.

Dividing an object up into many, very thin slices with the subsequent
calculations is a task best suited to a digital computer. Computers are used
for this purpose where very high accuracy and speed are required. It is
anticipated that, with the advent of computer-aided design within the
industry, more and more calculations will be performed using computers.

All the methods described here use simple arithmetic and are best
performed using the provided calculation sheets with the aid of a pocket
calculator.

Standardised notation is used throughout all the diagrams, examples and
calculations as described below.

MAJOR RADII RR; R, ELLIPTICAL MAJOR AXIS  aa; a,
(radii perpendicular

to a central axis) ELLIPTICAL MINOR AXIS bb, b,
OTHER RADII rrr, AREA AAA,
HEIGHT h h, h, OTHER VARIABLES DNW
LENGTH X X, X, CONSTANT =« (3.1416)

It is strongly recommended that each calculation is performed with a
layout identical to the ones given in the following examples. Blank
calculation sheets are provided for this purpose towards the rear of this

book.

All measurements are worked throughout in millimetres. The resultant
is divided by 1,000,000, converting cubic millimetres (millilitres) into litres,
giving a figure for the volume which is easier to manage and understand.



2.1 Round Forms-Index of Calculating Methods

<>
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a. Cylindrical Forms Page 8
Use of simple formula using two
measurements to obtain volume.

"

b. Truncated Cones Page 9
Use of simple formula using three
measurements to obtain volume.

—

— !
N

c. Addition of Cones Page 10
Close approximation of form by
dividing into a number of cones.
Volume calculation achieved by
summation of simple formula.

d. Durand’s Rule Page 12
Dividing form into equal intervals and
applying Durand’s rule to obtain
volume from dimensions of each
interval.

e
9

e. Pappus’ Theorem Page 14
Cutting half the profile out in heavy
paper, determining both the area and
the centre of gravity of the cut shape
and using a simple formula to obtain
volume.



Cylindrical Forms

Volume = TTR’h

Example

RadiusR=____ -

Heighth=____ S

w_h [ VollLitres
X »

£/000,000

| R
fe—
h
|
RadiusR = jL
Height h = 427
R w w7 I VollLitres
Qo2 X 42 X 3./42 2 /.9

1,000,000




Truncated Forms

Volume = T h [R¥4R2+RR,]
3

TopRadius R, =

H

Bottom Radius R, =

eight h=_

Example

h’—l Vol/Litres

3,000,000

ik

Top Radius R, = i .
Height h :,,so _—

Bottom Radius R, = & .

2 [N 2
ge24 F+ 2500 F+ 3400 I
. 3 ’I

S ] I VollLi
h /50 . n3'/42 Fx 10,524 I—\’ V/I/’Lbhgé I

—
1 Rz b— [
—

(R;)? E_T_J (R,)? I'-F, R x R,
Hd\_ﬁ'
]



Addition of Cones

2, 3, & 4 Truncated Cone Combinations
Volume = T [ h,(R3+RH4R,Ry)+h,(R2+RHR,R,)+h; RIH+RIHR,R)+h, (RIHRHRR;)]
3

h
1 R1 R1

: /7 |
I Ro h4
R2
ho h2 [
| A3

L7 =

R+ R1
hy Ro
|
ho h1
R3 l
R2
|
h2
I
R3
Internal radii Ri= R,= R,= R= -Rs
h, = h, = hy = he =
Ry)*

Ri xR2 Sum L)?Jh1 L‘_’ I

Ry)?

‘ 2
[ (Rs) +
[Ry xRy Sum L)TJ h; B;J
| Ry)?
1 Ry x Rs Sum | hy L’—,

A 4
| (Rs)” X

10



Example, Thomas COffee POt (as shown on front cover)

Calculation by Cones

N Ri
h1 | Ro
h
2 R3
|
h3
I
| s 4
4
hg
= 15_/

Internal radii R, = 36

e 6 .55 . 85

When the internal volume is divided into cones an
inaccuracy appears as the conic sections can only
approximate the internal curved form.

45 To increase the accuracy of the calculations

W /S 14 93

h- 22

the radius measurements of the conic sections can
extend a little into the body making the straight
line of the conic section average out the measured
volume space between the internal space and that
taken up by the material of the vessel.

||
» 59320 I

+

|
[ F’ £82/4 I

¥ /65550
m sum m_[VollLitres
X )11s60S9 2 1211

3,000,000



Durand’s Rule (Circular)

Volume = Tt%[(o-4 R LI R +Ro)*+R,) ... LIRp)+0-4R,)’]

2

2\

..

pe)

e

/‘—#——/‘
—
2 3

R10 j
RPen /
le.

I RFinal /

Minimum 4 equal intervals Up to 12 equal intervals
for simpler profiles for more complex profiles
Radii R, = R.= Ri= R, R
. R-= Re= R R
R (Penultimate)=____ RFina)=__
Overall heighth=____ No. of intervals N =

The number of radii inserted is dependent on the number
of intervals chosen.

R lm_[(Ry)2 I.X_I ")

A 4

The penultimate and final radii are always inserted at
the end

o

LLLLLL

R Penultimate L’Jm Penultimate)? \.{J |

+
R Final lm_J (R Final)2 | !

LLL

Y Y VY VY v ¥ + TL <

of
LLLLLLLLLLLL

m_[VollLitres
>

4,000,000

12



Example, Reijmyre Glass Decanter

|R1

Calculation by .
Durand’s Rule (Circular)

R Pen

R FiL/

RadiiR, = 26 R=_ 16 R,

R=: SO R- 64

R,

A e—

ldrd 30
70 Ry —

/17
70

R

R«

R

R (Penultimate) =‘65

Overall height h= _Z<5*_2

R (Final) = ,49

No. of intervals N = Jo,i

L’_J R)? ]

676

0-¢ 270 -4

]

X »
Mﬁ"'

s

6 256 /-/ * 28/-6
H—i\_i—l:*_
R; (R3)?
7 p— 289
——
Ry (Ry)?
/9 > 36/
——
Rs (Rs)?
30 —> 4900
+
R(, 2
50 —» 2500
+
R; (R;)?
&4 > 409¢
+
Rs
70 —Pp- 4900
+
Ry (Ro)?
70 —P- 4900
-
Rio (Ry0)?
»-
[._J +
R Penultimate R Penulhmam-_] ]
63 3969 s > 4365-9
+
R Fma (R Final )2
) 04 % scoe

VoliLitres

13



Pappus’ Theorem

Volume=2n AR

CofG

By locating the Centre of Gravity (C of G) and determining the area of half
the internal vertical section Pappus’ Theorem can be applied using the above
formula.

The Centre of Gravity (C of G) is found by cutting the half profile out of
card, and suspending it from at least two points around the periphery
allowing the cut-out to fall freely, and marking on the cut-out where the
perfect vertical lies for each suspension point. The place at which the
vertical lines cross indicates the C of G. The radius from the central axis of
the object to the C of G is found by direct measurement.

The area is found either by calculation using standard formulae for areas
listed on page 45, by weighing or more easily by square counting,

Square counting requires the half profile to be cut out, or marked out on
millimetre graph paper. The area is given directly by the addition of all the
squares within the shape.

Area of half profile A=__ mm’
Radius of C of G (millimetres)y R=___  mm
I-x_] R LXJ?[ 3/42 L;Jvolll_itres

500,000

The weighing method requires the use of an accurate balance to determine
the weight of half the profile shape and also the weight of a square,
measuring 100mm x 100mm, cut from the same piece of card.

Weight of profile (grammes) ~ Wy=______ g
Weight of square (grammes) W, =_____ g
Radius of C of G (millimetresy R =_____ mm
Wp R =50 h’_r\/ol/Litres

X X 0-0628

14

FIRST PIVOT
POINT
<
MARK LINE
WHERE
PLUMB LINE
FALLS

SUSPENSION
OFPLUMB
LINE

o

SECOND
PIVOT POINT

INTERSECTION
OFTHETWO
LINES INDICATES
C.OFG




Example, Thomas Bowl

Calculation by Pappus’ Theorem (Circular)

N

Area of half profile A =_7093 mm’

Radius of C & G R =_ 48  mm
| [~ [~ itres

7093 X" 43 T 3,42 %G

15



2.2 Elliptical Objects- Index of Calculating Methods

a. Straight Sided Page 17
Use of simple formula using five
measurements to obtain volume.

b. Addition of Cones Page 18
Close approximation of form by
dividing into a number of cones.
Volume calculation achieved by
summation of simple formula.

\L_,V/

¢. Durand’s Rule Page 20
Dividing form into equal intervals and
applying Durand’s rule to obtain
volume from dimensions of each
interval.




Straight Sided Elliptical Forms

Volume = TCh [(2a,+a,)b,+(a;+2a,)b ]
6

Different shape ellipses possible top & bottom

a1 . a2

WA
N

b1:=bo
h
h
|
Major axis radii a, = aa=_
Minor axis radii b, = by =
Height h =
2a; w [a, m [Sum m b, W |
55 > X >
+
2a, m Ja, m_[Sum [“ b, o]
¥ » X »

h’_l VollLitres

Example

Major axis radii a, = 76,8ifa: = lzs‘
Minor axis radii b, = “ b.= 775
Height h=_ ,,007

2a; m [a, m [Sum [ b, [
/136 + /25 » 26/ X 58 » /5138
+
2a, m Ja, m Sum ] b, |
250 + &8 * 38 X 75 » 23850
¥

17



Addition of Cones (Elliptical)

Volume = E [(Zal+al)b1hl+(a1+2a3)b3hl+( 2a1+a3)b1h2+(a2+2a3)b3h:+(2a3+a4)b3h3+(as+za4)b4h3+(Za4+a5)b4h4+(a4+235)b5h4]

NS

aj b1
. ok -
7 S\ i =
h2
ag b3
\ / h3
a, e b4
|
Height h, = h.= h.= -
ho=_
a = a, = =

of

bl
»®
+

JLLLLLLLL

o

[\/
+

of

Vol/Litres

18



Example, Hornsea Gravy Boat

Calculation by Cones

1
Height h = 7/, h.= 5 ih _ 22 When the internal volume is divided into cones an
4 inaccuracy appears as the conic sections can only
A approximate the internal curved form.
a :,527, a :,izia = 7b5 To increase the accuracy of the calculations

|
N
N

45 the radius measurements of the conic sections can
e - _ extend a little into the body making the straight
b, = ggj b :js's b.= ,is - line of the conic section average out the measured
-7} . 25-5 volume space between the internal space and that
T T taken up by the material of the vessel.

'
ey
2
<3
L=

E;JTd/Litres

19



, . °
Durand’s Rule (Elliptical) /
Volume = h Tt (0.4a,b,+1.1a,b,+a;b,+a,b,... 1.1a;bp+0.4a;by) — — - —
Ellipses can change from top to bottom
I
< b1 21 P
b2/ B N a2
b3 \ a3 _7
ba \ a4 ]
bs h \\ as j
bPen aPen
bFinal L \ aFinal_ /
| |
Minor axis b, = b, = b.= b, Major axis a, = 2, = a, = __a, = Heighth=___
b.= b, = b.= b.= R a = a = a.-= a,=_ __ Noof intervals
b= b,= b= b = = 2, = _a= a=

(Penultimate) (Final) (Penultimate) (Final)

ap Mbl m L‘_I

X ry
R — 5
a; |.)?J b, = E
— — o
as ]-’bes [ 5
e — +
ao l-)TJ bo m .
—_—

+

% »

|

s %[ }E y
JLLJLL,
WUy

Y L) ] ) ) ]y ) o] ) ) ]

-

a Penultimate m_Jb Penultimate ]
X I/ >

a Final lw_J b Final [*|
X X

4,000,000

20



Example, Hornsea Gravy Boat
Calculation by Durland’s Rule (Elliptical)

21
az
33
" \
lgs _) :
a6 /
a Pen J
; Fin 4_/ R
| |
Minor axis b;=éi‘ib; =mb;=mb;i Major axis a, :_SLa- =_SL3. =jl a, = 7764 Heighth= ‘5
b= ﬁ b, = 40 b.= b.= a<=__‘La =4‘,_'ia-: a=__ No of intervals N= 2
by= b, = b= 35’ b = 2&‘,,5 a,= aw = a—_5La= 445
(Penultimate) (Final) (Penultimate) (Final)
ap l-_l b1 L_! h_J
52 S 335 X o4 » C96-8
M—\!*_
a lm_Ib, | ]
52 X 335 X 7 » /qr6-2

as |.l_]b3

&/ X = 345 » 2409-5
e -
ag l-Jb4 I-

&z X 42 » 2688
Hﬁ +
as |.I_J b5 l-

&4 X 42 » 2622
“ ::.*,
a5 I.—Jb(j L

615 X 40 » 2460
L ST —
as l-,?J b, . 5
ey —
as l.x_l bs I 5
—— —
ay l.beg | 5
ﬁ_‘ﬁ :.{.
aio lli bio m >
—d—l—i LH"‘

enultimate b ultim,
aPsgx at l-’?l Per:glg ate  m_J 1/ hr’ 2/5‘

lm_|b Final

a Final

445 F" 245 g5 i 3¢/ I

[
y 9286

21



2.3 Geometric Forms Index of Calculating Methods

a. Straight Sided Page 23
Use of simple formulae using four
measurements to obtain volume.

2\ JAN

Page 24

\ b. Addition of Cones
Close approximation of form by
\ 7 dividing into a number of
pyramidal forms.
N\ / Volume calculation achieved by

I summation of simple formulae.

[ ¢. Durand’s Rule Page 26

L ) Dividing form into equal intervals and
applying Durand’s rule to obtain

\ / volume from dimensions of each

\ ] interval.




Straight Sided Geometric Form (Polygonal)

Volume of Cylindrical Polygonal Shapes = Dh R?
Volume of Truncated Pyramidal Shapes = DTh RI+R3+R, Ry

Volume of Truncated Pyramidal Shapes (Polygonal into Round) = h [(2D-n) (R,)*+D(R,)*+ DRR,]
3

R1
VALUE OF D
No of sides of
Polygon

3 1.299

4 2.0

5 23775

6 2

8 2.8284

9 2.8926

10 2.9388

11 2.9736

12 3.0

13 3.0207

14 3.0372

1 3.0504

16 3.0615

T la [T n 17 3.0705

l‘ 18 3.078

19 3.0846
” 20 3.090
| i 3.142(m)

ie. circular

T ——————

R, =R, for cylindrical shapes

h
A} ’
\ \ / N
\ /
S B LV PN A ” 3
Radius of scribed circle around top polygon R, mm
Radius of scribed circle around bottom polygon R, mm
Constant D from look-up tables D _
Height of body h

h’_, VoliLitres

3,000,000




Pyramidal Forms

Volume = D[ h;(Ri+R,R, + R} )+h,RI+R,R4R)+..... ]

5

fo)

Note: The twisting of a polygonal form has no effect on its volume.

&

h

h1

h2

ho

h3

h3

The radius is always measured into the angle where the faces meet)
Note: the twisting of a polygonal form has no effect on its volume.

Interval radii R=—_ = R=
Interval heights h,=___

Number of facets N= _

Dis found from look-up tables D=

1 (Ry)?

R |Ry)*

=
B
e

24

____R=

hg

R.= R.=
h, = VALUE OF D
No of sides of
Polygon
:
6
8
1’\
- e L
13
14
15
16
+ 17
18
19
20
] 3.142 (m)
Sum th hl h‘_J I ie. circular
+
Sum hx_l h; h‘_j I
+
N S
¥
D ifj Sum ﬂ’—’ VolumelLitres




Example, Coalport Vase

Calculation by Cones (Polygonal)

R1

h1

Interval radii R, = 55 R.= @ R.= 40 _R.= ,g __ _R=
Interval heights  h, = zq h.= /q h.= ,2.5 h,=

Number of facets N = (2]

VALUE OF D

No of sides of

D s found from look-up tables D:&ng POI);}'-OH
R,)?
25 :
Ri xR, Sum ] h, [ | i;‘
2750 8275 F" 29 |—" 23997Ss Con
R .
2500 * -
| 1;
R, x R; Sum mh, [ I ;: 3142(n
_zooo 6’00 X - /q [ //sq oo i ie. circular
(R3)?
/600D +
R; xRy Sum o h; ]
720 2644 F" /2-S » 330S0
(Ry)?
324 "
Ry x Rs Sum E)TI h; h:J
] *
5)? m lumel/Litres
(Rs) DZ'ng Vo 31_7te

3/ oo oI OOO




Durand’s (Polygonal)

Volume = Dh[ 0.4(R
N

DPHLIR) R+ R, ... TL1(Rp)*+0.4(Rp)]

3

Where R, = Penultimate radius.
R; = Final radius.

26

)
iy

h \RG
1 \Fw
e
i
i j R10
i
—
Radii R, = R.= R, = Ri= R, =
R.= R.= Re= R= Re=
R (Penultimate) = R (Final) =

Overall height h =

Constant D from look-up tables D =

No of intervals N =

R, m [(R1)? L_Jx

R,

o
5
e

R; I > (Rs)?
—
Ry I > (Ry)?
——
Rs (Rs)?
>
B
R (Re)?
: >
-
R7 > (R7)Z
: +
Rg I > (Re)?
T——
R I > (Ro)
—
Ryo > (Ry0)?
—q_‘_
R Penultimate l.’_! (R Penultimate)? \-x_] // y
+
R Final \-:1 (R Final)2 hx_[ ]

VALUE OF D
No of sides of
Polygon
3 1.299
4 2.0
5 2.3775
6 2.598
7 2.7363
8 2.8284
9 2.8926
10 2.9388
11 2.9736
12 3.0
13 3.0207
14 3.0372
15 3.0504
16 3.0615
17 3.0705
18 3.0783
19 3.0846
20 3.0903
€2 3.142 (m)
ie. circular

VolumelLitres




2.4 Irregular Polygons & Complex Forms

The volume of any form can be calculated using Durand’s Rule, which is
fundamentally a method of slicing the form into regular intervals and
averaging the area measurements of all the cross-sections. The specific
cases of using Durand’s Rule for circular, elliptical and polygonal forms are
covered in earlier chapters, but for irregular forms it is necessary to
calculate the area of each cross-section.

Area Ai =
A
A=

>

4

The shape is divided into 6 equal
intervals and the area of the 7 cross-

>
I

> >

sections calculated. The first and
last cross-section represents the top
and bottom shapes.

Three methods are described here for calculating areas:
1. Calculation
A shape can be simplified into triangles, rectangles and circles, then the
component areas can be totalled together. More complicated shapes may

require subtraction as well as addition to approximate the shape.

2. Graph Paper
Each cross-section can be drawn on graph paper and by counting the
squares within the shape the area can be directly determined.

3. Weighing
Each cross-section can be cut out of a sheet of card and then weighed
individually. The weight of a square (measuring 100mm x 100mm) cut
from the same card is also determined.

Weight of profile W, =
Weight of square W. =

[ m | AREA mm2
X 10,000 % "
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Durand’s by Areas (Irregular Forms)

Volume =h[ 0.4A+1.1A +A+AFAAA+AA+AFAATIA+04A;] Ap = Penultimate area.
A = Final area.

Note: Lateral displacement or twisting of the constituent sections alters the
form of the object but has no effect on its volume. This process is known as shearing

Number of intervals N =

Heighth= mm

Areas A, mm* A, mm?* A, __mm:
A, mm?  A. mmz A, mm?
A mm2 A mm? A, mm2
A (Pen) mm?*  A(Final) mm?

L
of

+
of

F
LLLT_TLLL

h lm_JSum | VoliLitres
N X . »
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Example, Suomi Teapot

|

L >

T

I

Number of intervals N = — The above diagrams show a method of calculating areas by a simpli-

e /103 fication of the geometry. The Suomi teapot is sliced and each section
eighth = mm drawn up (two repeats). As the shape can be approximated into a

Areas A, 6725 mm* A /137049 mm? A, /4450 mm® rounded square the area calculation was a subtraction of the corner

A (4450 .. A fillet areas from the overall square. The workings of these calculations
¢ : are not shown here.

mm* A, mm?2

A, mm? A, mm& A,
A(Pen)m—aqmm‘ ;(Flnal) ﬁ mm?

A Penultimate

/370G

|

Vol/Litres
/-350

of

lm_]
X 4,000,000 I-‘_l 5,000,000
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3. Comparison of Calculation Methods

All measurements are worked throughout in millimetres. The resultant is divided by 1,000,000 converting
cubic millimetres (millilitres) into litres.

1. Durand’s (Circular Form)

Radii R, /23 R, 122 R, /20 R, #7 R, ¥4
R,_ /0 R, /0S5 R, 98 R, 90 R, 80
R (Penultimate) = _ 66 R (Final) = g6

Overall height h = /70 NoofintervalsN=__#

l-_J (R)?
I—| /5/2? F F
Rz wJ
22 F /4894- l_lx // i
R; 120 > (Rs)?
Y 7 >
14 >
* 110 >
/08 >
Rs
98 ——
* 90 >
™ 80 >
R (Penultimate) h_,R (Penultimate)? m_|
(4 4356 hd 1/
R Final [ (R Final)2 [*H|
36 F’ 1296 F" 0-4 i .
"o %
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52

Y

Ry

R,

38

Ry

Rs

Rs I

A 4

Re

35

Rz

10

Rg !

»la
L4

R

<

26

Rio

<

RPEN

N L/
=% \RS_’ Reinas —

2. Addition of Cones (Circular Form)

Sliceradii R, 123 R, =2 R, 97 R,

é8 R, 36

Slice heights h, S8 h, S5 h; 26 h, //
o499 X" 38 % /6/4962I
+

‘33729 p

k3 /182615 I
-+

Sum

gl

+

Sum

9368

92042

V

m_Isy, B VoliLitres
" 3142 I 3425974F’ 3588 I
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3.Averaging Radii

123

122

120

117 VOLUME = 3.142 x 98.42 x 98.42 x 110
114

110 = 3.348 litre

105

N4

t

'

~ R A

Y

el el e sl as Sl
o X O O
o O O ®

~
—_
—
5 | o
= O

Averageradii=1181 =98.42mm
12

4. Pappus’ Theorem

Area by calculation A =11035mm?
Radiusto Cof G R =52mm

A = TR | [ itr
/035 X' 52 X322 ¥ %5eoe

Summary

1. Durand'’s 3.646 litre
2. Cones 3.588 litre
3. Averaging radii 3.348 litre

4. Pappus’ Theorem 3.600 litre

Conclusion

Calculation of the volume by Durand’s method, the
Cones method and by using Pappus’ theorem all give
reasonable results. These three results vary by less than
1.6%. Calculation by the first method is expected to
give an accurate result. The second method yield a
lower volume; this is a result of the cones all being
described completely within the shape, leaving thin
pieces at the periphery (between the straight lines and
the curve) ignored in the calculation. Pappus’ theorem
will also yield an accurate answer (errors are introduced
by inaccuracies in measuring the area and determining
the centre of gravity).

The third method, averaging the radii, give an
erroneous result. This method is mathematically
incorrect, and will, in most circumstances, produce a
wrong answer (more extreme curves give far worse
results). It is unfortunate that this method has been the
most frequently taught to students at colleges, and it is
recommended that this method should never be used.
The first method, Durand’s rule, will give an accurate
answer and involves no more calculations than
averaging the radii.

In terms of usefulness, Durand’s method is accurate but
involves making many measurements, the Cones
method is almost as accurate and involves much fewer
measurements. Pappus’ theorem is very practical and
involves making only two measurements but the
accuracy is very much dependant on the skill of the
user.



4. Scaling Three Dimensional Volumetric Scaling

IVolume Linear Multiplication Volume Linear Multiplication
ncrease Increase Factor Decrease Decrease Factor
) % ) %
[ 1 0.3 1.0033 1 0.3 0.9967
2 0.7 1.0066 2 0.7 0.9933
i 3 1.0 1.0099 cl 1.0 0.9899
[ 4 1.3 1.0132 4 1.3 0.9865
b 1.6 1.0164 5 1.7 0.9830
6 2.0 1.0196 6 2.0 0.9796
7 2.3 1.0228 7 24 0.9761
8 2.6 1.0260 8 2.7 0.9726
9 29 1.0291 9 21 0.9691
10 % 1.0323 10 3.4 0.9655
11 35 1.0354 11 38 0.9619
12 30 1.0385 12 42 0.9583
13 4.0 1.0416 13 45 0.9546
14 45 1.0446 14 49 0.9510
15 4.8 1.0477 15 5s 0.9473
16 5.1 1.0507 16 5.7 0.9435
17 5.4 10057 17 6.0 0.9398
18 5.7 1.0567 18 6.4 0.9360
19 6.0 1.0597 19 6.8 0.9322
20 6.3 1.0627 20 7.2 0.9283
21 6.6 1.0656 21 7.6 0.9244
pH A 6.9 1.0685 22 8.0 0.9205
- 7.1 1.0714 A 83 0.9166
24 7.4 1.0743 24 8.7 0.9126
25 7.7 1.0772 25 9.1 0.9086
26 8.0 1.0801 ’ 26 9.6 0.9045
27 8.3 1.0829 27 10.0 0.9004
28 8.6 1.0858 28 104 0.8963
29 8.9 1.0886 29 10.8 0.8921
30 9.1 1.0914 30 11.2 0.8879
o 9.4 1.0942 31 11.6 0.8837
32 9.7 1.0970 o 12.1 0.8794
o 10.0 1.0997 3 12.5 0.8750
34 710.2\ 1.1025 34 12.9 0.8707
a5 10.5 1.1052 35 134 0.8662
36 10.8 1.1079 36 13.8 0.8618
37 11.1 1.1106 37 14.3 0.8573
38 11.3 1.1133 38 14.7 0.8527
39 11.6 1.1160 39 15.2 0.8481
40 11.9 1.1187 40 15.7 0.8434
41 121 1.1213 41 16.1 0.8387
42 124 1.1240 42 16.6 0.8340
43 12.7 1.1266 43 17.1 0.8291
44 129 1.1292 44 17.6 0.8243
45 13.2 1.1319 45 18.1 0.8193
46 134 1.1344 46 18.6 0.8143
47 13.7 1.1370 47 19.1 0.8093
48 14.0 1.1396 48 19.6 0.8041
49 14.2 1.1422 49 20.1 0.7990
50 14,5 1.1447 50 20.6 0.7937

Itis often necessary to change the capacity of a design by increasing or decreasing its dimensions. For example,
if a designed pot has a volume of say 0.8 litres and it is desired to increase this by 2500 to 1 litre, then it is
necessary to know by what percentage its linear dimensions (usually length, breadth and height) be increased.

Using the three-dimensional scaling table, it can be seen that a 25% volume increase would necessitate a 7.7%
linear increase (or multiply all linear measurements by 1.0772).

This table gives values for volume changes from a 500 decrease to a 509 increase. If the required volume
change is outside this range, then the calculation should be split into two or more stages.

e.g. what linear change is required to decrease the volume of an object from 2 litre down to 0.6 litres?
2 litre less 5000 =1 litre  (multiplication factor = 0.7937)
1 litre less 4000 = 0.6 litre (multiplication factor = 0.8434)

Overall linear multiplication factor = 0.7937 x 0.8434
= 0.6694
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Two Dimensional Volumetric Scaling  Proportional

Volume Linear Multiplication
Increase Increase Factor
0% %
1 0.5 1.0050
2 1.0 1.0100
s 15 1.0149
p 20 1.0198
5 25 1.0247
6 3.0 1.0296
; 34 1.0344
8 39 1.0392
9 44 1.0440
10 4.9 1.0488
o 5.4 1.0536
12 5.8 1.0583
13 6.3 1.0630
14 6.8 1.0677
15 7.2 1.0724
16 77 1.0770
17 82 1.0817
18 8.6 1.0863
19 9.1 1.0909
20 95 1.0954
21 10.0 1.1000
22 105 1.1045
23 10.9 1.1091
24 114 1.1136
25 11.8 1.1180
26 12.3 1.1225
27 12.7 1.1269
28 131 11314
29 13.6 11358
30 14.0 1.1402
31 145 1.1446
32 149 1.1489
33 15.3 11533
34 15.8 11576
35 16.2 1.1619
36 16.6 1.1662
37 17.1 1.1705
38 175 1.1747
39 17.9 1.1790
40 18.3 11832
41 18.7 1.1874
42 19.2 11916
43 19.6 1.1958
44 20.0 1.2000
45 20.4 1.2042
46 208 1.2083
47 212 1.2124
48 217 1.2166
49 221 1.2207
50 225 1.2247

Volume

Linear

Decrease Decrease Mu}gg;;?hon
% %
1 0.5 0.9950
2 1.0 0.9899
3 1.5 0.9849
4 2.0 0.9798
5 2.5 0.9747
6 3.0 0.9695
7 3.6 0.9644
8 41 0.9592
9 4.6 0.9539
10 5.1 0.9487
11 5.7 0.9434
12 6.2 0.9381
13 6.7 0.9327
14 7.3 0.9274
15 7.8 0.9220
16 8.4 0.9165
17 8.9 0.9110
18 9.5 0.9055
19 10.0 0.9000
20 10.6 0.8944
21 11.1 0.8888
22 11.7 0.8832
23 12.3 0.8775
24 12.8 0.8718
25 134 0.8660
26 14.0 0.8602
o 14.6 0.8544
28 15.2 0.8485
29 15.7 0.8426
30 16.3 0.8367
31 16.9 0.8307
32 17.5 0.8246
33 18.2 0.8185
34 18.8 0.8124
35 194 0.8062
36 20.0 0.8000
37 20.6 0.7937
38 215 0.7874
39 21.9 0.7810
40 2o 0.7746
41 23.2 0.7681
42 23.8 0.7616
43 245 0.7550
44 25.2 0.7483
45 25.8 0.7416
46 26.5 0.7348
47 Y 0.7280
48 27.9 0.7211
49 28.6 1.7141
50 29.3 1.7071

Sometimes it is desirable to change only the linear measurements in two dimensions, keeping the third
dimension fixed. For example, if it was desired to increase the capacity of a 0.8 litre pot by 2500 with the
restriction that the height should not change, then it is necessary to know by how much the horizontal
measurements should be increased. Using the two-dimensional scaling table, it can be seen that an 11.8%
increase (or multiply by 1.1180) in the horizontal measurements (length and breadth) is required.

If the required volume change is beyond the limits of the table then the calculation should be split into two or

more stages.
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Modellers Scale
A
Ol
| -
| |

A modellers scale is a practical method of
scaling up or down a model or a drawing.
It is widely used in the ceramic industry
by modellers who have to take into account the
shrinkage that occurs in most ceramic bodies and
can be used for any form of proportional scaling,
For example:
Earthenware has a shrinkage of 1 in 12 so a plate
made from a 12" diameter mould will give an 11"
diameter fired plate. To make a modellers scale for
earthenware shrinkage proceed as follows:

Draw a base line from point 0 of any length
but for convenience choose a length that is
divisible by 12 (say 24 cms), then strike a point on
your base line that is 1/12 shorter, ie. 22 cms. Erect 2
perpendiculars from the base line at 22 and 24 cms
from point 0. Any measurement made on one of the
perpendiculars if drawn through in a straight line to
point 0 will cross the other perpendicular, giving an
11 to 12 relationship. This scale is widely used by
modellers using calipers working from a fired size to
a clay size model; they do not need to know the
actual measurements that they are taking,
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5. Thicknesses that might be  Useful Capacities for
expected with different Ceramic Tableware
matel'lalS and pI'OdUCtS Perceived capacity is what really matters and the

following must be seen only as a general guide:
It is only possible to calculate the volume of a vessel

from a drawing or model if you know the wall litres
thickness of the material from which the article is to be

made. The following list gives the approximate wall Breakfast Cup most markets 35

thicknesses to be expected with holloware items made Tea Cup most markets 5

in ceramic, glass and certain other materials. Coffee Cup Germany/Scandinavia .20

CERAMIC TABLEWARE Expresso Cup [taly/Greece 10
Sugar most markets 35

Materials s Cream most markets 35

— — Cream Germany 18

Cup Bone China 25-3 Gravy Boat most markets 50

Cream, Bone China 3 Tea Pot most markets 1.20

Sugar Bone China 3 Coffee Pot most markets 1.20

Coffeepot Bone China 35-4 Vegetable Casserole Dish most markets 1.75

Teapot Bone China 35-4

Gravy Boat Bone China 4

Mug Bone China 25-3

Cast Giftware Bone China 3

Cup Earthenware 35-4

Cream Earthenware 4

Sugar Earthenware 4-5

Coffeepot Earthenware 4

Teapot Earthenware 4

Mug Earthenware 4-5

Cookware Earthenware 5-7

Cookware Porcelain 5-7

Cookware Stoneware 5-7

Tableware Porcelain high quality as bone china
Tableware Porcelain low quality as earthenware
Tableware Stoneware as earthenware

GLASS HOLLOWARE

Stemware Handblown not cut 1-2
Stemware Machine made high quality 1.5-2
Stemware Cut Crystal hand blown 2-25
Tumblers Machine made  high quality 2-3
Tumblers Hand Blown not cut 2-3
Tumblers Cut Crystal hand blown 2-3
Cookware Pressed small pieces 4-5
Cookware Pressed large pieces 5-6
Storage Jars machine made 4-6
Jugs, Decanters hand blown not cut 3 -5
Bottles machine made 2.5
METAL COOKWARE

Cast iron 4-6
Enamel Steel 15-2
Aluminium 24
Stainless Steel 1



6. Calculation sheets for photocopying

All measurements must be worked in millimetres. The resultant is
divided converting cubic millimetres (millilitres) into litres.

Cylindrical Forms (Circular) sce peges

Radius R =

Heighth =

h;J Vol/Litres

3142

4,000,000

Truncated Cones (Circular) e pageo

Top Radius R, =
Height h =
Bottom Radius R, =

Ry)? l-_FJ R,)? \-_FWX R,
M’
[

h’—] Vol/Litres

3,000,000

Straight Sided Elliptical Forms «ce page 7

Major axis radii a; = a,=

Minor axis radii b, = b, =
Height h =
2a, m_a, lm_/Sum m /b, "

+ » X 9>
-—I—‘—-I—‘——I—L_I_Lq +A
2a, mJa m | Sum S ]

+ [ X L2
M "

h ["E m | Sum m_| VollLitres
X X »
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Addlhon Of COHGS (Clrcular FOITIIS) see page 10

InternalradiiRi=__~~ R=__  R,= R, R,

R, xR; Sum h—]hz S|
: X » I

R; x Ry Sum L_,h [

L

(Ry)?

R, x Rs Sum I, |

%,' VollLitres

3,000,000

Pappus” Theorem (Circular Forms) e page 1

Area of half profle A =___ = mm

Radius of C of G R = . All measurements must be

worked in millimetres.

The resultant is divided

m[VollLitres
Y

"3.142

converting cubic

millimetres (millilitres)

Weight of profile (grammes) W, = g into_litres.
Weight of square (grammes) Ws = g

Radius to C & G (millimetresy R =__ mm

Wp l-x_“{ hfl?+ 50 h’_l Vol/Litres

0-0c22




Durand'’s Rule (Circular Forms) s psge 12

Radii R, = R,= R;= R, R,
Re= R, = Ry= R Rio
R (Penultimate) = R (Final) =

Overall height h = No. of intervals N =

Y VR

—

Z

v

b
&

i Y v v ¢|
LLLLLLLLLLLL

A 4

~
5

v

R Penultimate l.’_] (R Penultimate)?

R Final L.‘J (R Final)2

All measurements must be worked in millimetres. The resultant is

divided converting cubic millimetres (millilitres) into litres.
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Addition of Cones (Elliptical Forms) s page s

Height h, = h, = h, =
h, =
a, = o e
a, = a; =
b, = b, = b, =
b, = by =

L
C
of

g
.
of

+
4
of

g
!
o

E

4
-
of

}

JLLLLLLLL

s
g
o

VoliLitres

All measurements must be worked in millimetres. The resultant is
divided converting cubic millimetres (millilitres) into litres.



Durand’s Rule (Elliptical Forms) sce page 20

Major axis a; = a, = a; = a, =
as = a = a; = as =
a, = ap = a = a =
Penultimate Final
Minor axis b; = b, = b,= b,
b, = b, = b, = b, =
b, = b= b= b =
Penultimate Final
Heighth=__  No.ofIntervals N=
a m /b, |

|[

All measurements must be

a hx_l b, h’_(__[ /o0 h’_J
+
as | b3 h
X >
o
ay h_, b.; h
Fx I L2 worked in millimetres.
a T . s :+ The resultant is divided by
e e : 1,000,000 converting cubic
+
= b = > millimetres (millilitres) into
“ J’: 1 ]itres.
ay m (b, [
X >
Hﬁ
+
as h_] bg L
X D
Jﬁ
+
g h_, bg L
X >
“
+
aio | bio [
X >
“ LH

4

a Penultimate hx_erenulh'mate W] Y

+J
a Final h)TI b Final hfli 04 L;]
M'
Vol/Litres
>

A 4

h w ] m [ Sum

X X

4,000,000
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Straight Sided Geometric Forms (Polygonal) e page

Radius of scribed circle around top polygon R, All measurements must be
Radius of scribed circle around bottom polygon R, WOHEd SIS
The resultant is divided
Constant D from look-up tables D
oneran 3 converting cubic millimetres
Height of body h (millilitres) into litres.
R, =R, for cylindrical shapes VALUE OF D
| No of sides of
Polygon
‘h‘_JVOl/Litres ‘ : :_54
.
Pyramidal FOrms e page 24 2
Interval heights  h, = h, = h, = h, =
Interval radii R, = R,= R,= R,=
Number of facets N = Ry=

D is found from look-up table D =

R, (Ry)?

Ry xR, Sum Mhl h’_J I

R,

Ry x Rs Sum hfj hy h;—l
4
(Ry)? D ~ L’—, VolumelLitres

3,000,000




Durand’s Rule (Polygonal FOrms) . page

i R, = R = R Ry= R, =
R, = R, = R = R, = R, =
R (Penultimate)=___ R (Final) =
Overall heighth=___ No of intervals N =
Constant D from look-up tables D =
R ‘l-’_] (Rp)? hx—] 0-4 I';] VALUE OF D
M*_ | U
R 1%1 R,)? Lx_l Y \L’J } : a0
M"’ 6

Ry

10

ui’

20
:+ | ie. circular

~
&

LLLLL

~
&

-
e

~
s
=
S
e

>
R Penultimate l.’_l (R Penultimate)? L’TJ

R Final \.;J (R Final)2 L’_(_I

L.H L:i VollLitres

4,000,000

All measurements must be worked in millimetres. The resultant is
divided by 1,000,000 converting cubic millimetres (millilitres) into litres.



Durand’s Rule
Irregular Polygonal & Complex Forms sce page 2

Weight of profile Wer -

Weight of square L -

hX_IIOIODO I.’_IAREA

All measurements must be worked in millimetres. The resultant is
divided by 1,000,000 converting cubic millimetres (millilitres) into litres.

Heighth=___  mm  Number of intervals N =

Areas A; mm2 A, mm A, mm?*
Ay mm? A, mm? Ay mm?
A, mm? A mm? A, mm
APen)  mm? AEna)__ mm?

As w AL
+

r

|

A Penultimate -

A Final ] h’_]

N ~ 1000,000 ™5



7. Factors, Densities & Formulae

Conversion Factors (Metric/Imperial)

To change into multiply by To change into multiply by
LENGTH
Inches Centimetres 2:5400 Centimetres Inches 0-3937
AREA
Square inches Square centimetres 6-4516 Square centimetres Square inches 0-1550
VOLUME
Cubic inches Cubic centimetres 16.387 Cubic centimetres Cubic inches 0.06102
Cubic feet Litres 28317 Litres Cubic feet 0-03531
Cubic metres 002832 Cubic metres 35311

Cubic feet Imperial gallons 6237 Imperial gallons Cubic feet 01603
Cubic yards Cubic metres 0-7645 Cubic metres Cubic yards 1:3080
Imperial gallons Litres 45460 Litres Imperial gallons 0-2200
Imperial gallons U.S. gallons 1-205 U.S. gallons Imperial gallons 0-830
Pints Litres 05682 Litres Pints 1-7598
MASS
Grains Grams 00648 Grams Grains 15432
Ounces (avoir) Grams 28-352 Grams Ounces (avoir) 003527
Pounds Kilograms 0-4536 Kilograms Pounds 2:20462

Densities of Ceramic Materials

Earthenware 2.2 glem®

Stoneware 2.3 glem®

Porcelain 24 glem - 2.7 glem®

Bone China 2.5 glem - 2.8 glem’®

Volumes of Circular Forms

Cylindrical (see page 8)

V=nR*h

Truncated Cones (page 9)
V=TLh®R+R+R,R,)

3

Addition of Cones (page 10)

V=T [R7+R;+R Rph; + R”2+R+R,R)h,....
3

Durand’s Rule (page 12)
V=mth (4R} + T 1RZ+R:+R:..... T1R}+04R)
N

Pappus’ Theorem (page 14)

V=2n AR

Volumes of Elliptical Forms

Cylindrical & Truncated Forms (page 17)
V=Tlh ((2a; + a,) b, + (a, + 2a,) b,)
6

Addition of Cones (page 18)
V =TU((2a, + a,)b, h, + (a;+2a,)b, h, + 2a, + a;)b, h, +
6

Durand’s Rule (Page 20)
V=hm(04ab, + I-1a, b, + a; b; + a, b,
N

Irregular Forms

(a,+2ay)b; h, +

Ila b + 04a b)

Pen Pen

Using Durand’s Method, (Page 28)

V=h(04A, + 11A, + A, + A, . ... T1A + 04A)
N

Pen

Final

Volumes of Polygons

Cylindrical Shapes (page 23)

V=D hR?

Truncated Pyramids (page 23)

V=DhR?+R!+R,R,)

3

Addition of Cones (page 24)
V=D(R?+R:+ R, R)h, + R2+R2+R,Ryh,....)

Durand’s Method. (page 26)

V=Dh(04R;* + IR, + RZ+R..... TIR? + 04R?)
N

Pen

Area Equations

Rectangle A =xy

Circle A=nR’
Eclipse A=rab
Polygon A =DR*

Volume Equations

Sphere V= % nr

Cone V= % nR’h




QUEENSBERRY HUNT

Queensberry Hunt is one of England’s leading product design groups. They are
particularly well known for their work in the ceramic field. The partners have
between them won six Design Council Awards and the German Bundes Preis (Gute
Form). The partner’s work is also well represented in the permanent collection of the
Victoria & Albert Museum. David Queensberry, who was Professor of Ceramics and
Glass at the Royal College of Art until 1984, founded the group with one of his
students, Martin Hunt RD], in 1966. In recent years two younger designers have
become partners, Robin Levien and John Horler. The partnership has worked for
many distinguished manufacturers and retailers, these include:

American Standard Mikasa

British Telecom Pilkington Glass
Corning Pilkington Tiles
Dartington Crystal Poole Pottery
Habitat Rosenthal China
Hornsea Pottery Royal Doulton
Ideal Standard Siam Fine China
Marks & Spencer Thomas China
Queensberry Hunt

24 Brook Mews North

LONDON

W2 3BW

Tel:  01-724 3701
Fax  01-723 0508

POTTERYCRAFTS

Potterycrafts Limited is the country’s leading manufacturer and supplier of pottery materials
and equipment for craft, hobby, education and small industrial use. The company has

one of the largest ranges in the world covering the whole spectrum of potters’ needs

from clays and glazes to kilns, potters wheels, tools and books.

Potterycrafts is not simply a source of supply, the company also has a commitment

to providing technical help and advice and furthering the advance of knowledge and

skill in all aspects of hand made ceramics.
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